ICASE REPORT

PERFORMANCE OF A DATA BASE MANAGEMENT SYSTEM
WITH PARTIALLY LOCKED VIRTUAL BUFFERS

Richard S. Brice

Stephen W. Sherman

Report No. 76-6
February 27. 1976

INSTITUTE FOR COMPUTER APPLICATIONS
IN SCIENCE AND ENGINEERING
Operated by the

UNIVERSITIES SPACE RESEARCH ASSOCIATION
3 at
NASA Langley Research Center
Hampton, Virginia

(NASA-CR-185729) PERFORMANCE OF A DATA BASE NB89-711336
MANAGEMENT SYSTEM WITH PARTIALLY LOCKED

VIRTUAL BUFFERS (ICASE) 17 p unclas

00/60 0224346

PERFORMANCE OF A DATA BASE MANAGEMENT SYSTEM

WITH PARTIALLY LOCKED VIRTUAL BUFFERS

Richard S. Brice
Department of Civil, Mechanical and Environmental Engineering
George Washington University
Stephen W. Sherman*

Institute for Computer Applications in Science and Engineering

A3STRACT

Buffer pools are created aad manaced in data base systems in order to reduce
the total amount o accesses :0 the T/C cdevices. In systems using virtual
memory, any recuction in I/0 accesses mav be accompanied by an increase in
paging. In this paper we examine this phenomenon in systems where the virtual
buffer is allocated fixed amounts of real memory and partitioned from the
program. Our analysis utilizes empirical data gathered in a multifactor
experiment. The factors we consider are memory size, virtual buffer size,
replacement algorithm for memory, buffer management algorithm, and size of

real memory allocated to the buffer.

Acknowledgement

We wish to thank Professor Jim Browne for suggesting this area of research
and Professors Browne and Arden for their comments on our initial research,
We also wish to acknowledge the technical support provided bv Ron Murphv.

* On leave from the University of Houston

This paper was prepared as a result of work performed under NASA Contract No.
NAS1-14101 while the second author was in residence at ICASE, NASA Llanglev
Research Center, Hampton, VA 23665. The work of the first author was sup-
ported by NASA Grant NGR-09-010-078.

Introduction

Computer programs that require substantial amounts of I/0 often use
part of primary memory as a buffer for data from secondary memory. If
the overhead to manage the data in primary memory is negligible and the
buffer consumes previously unused primary memory, then the use of buffers
improves performance due to the faster access to primary than to secondary
memory. The use of a buffer in a virtual memory system may cause a decrease
in performance due to competition for primary memory between the program
and the buffer. Performance can also be degraded by double paging. The
dynamics of double paging was characterized by Goldberg and Hassinger
[1] as the running of a paged operating system under a paged virtual machine
monitor. In this paper, double paging refers to the management of buffer
storage under the control of a paged virtual memory environment.

We define virtual buffers as the I/0 buffers in a program running on a
virtual memory system. In a previous study [2] of the use of virtual buffers,
we conducted a multifactor experiment to study the effects of four factors
on performance. The factors were virtual buffer manager, virtual buffer size,
primary memory size and paging replacement algorithm. This series of 240
experiments was conducted in a controlled laboratory environment [3] by running
a data base management program on a dedicated system and measuring the perform-
ance as we varied the factors. The data base management program executed a
predetermined and unvarying script.

The experiments in the previous study did not partition real memory between
the program and its virtual buffer. The program, operating system and virtual
buffer, all competed for real memory. The real memory was managed in a global

page table by the page replacement algorithm.

In this study we partition memory between the program and the virtual
buffer so that the impact of the control variables can be more effectively
evaluated. We implement the partition by modifications to the page replace-
ment algorithm. We conduct a set of partitioned experiments in a controlled
environment using the same data base management program and script that was
used in the non-partitioned experiments. We vary an interesting subset of
the same factors used in the non-partitioned experiments and, in addition,
vary the amount of real memory allocated to the virtual buffer.

The partitioned experiments show that the least amount of paging in the
system is achieved when different paging algorithms are used for the program
partition and the buffer partition. Significant variations in performance
are produced when the amount of primary memory is fixed and the partition
size is varied and when the partition size is also fixed and the virtual buf-
fer size is varied. The best system performance was achieved when the virtual
buffer was either the same size as the buffer partition or was much larger
than the partition. The partitioned experiments also show that while double
paging is a significant factor, the variation in double paging due to the
interaction between the paging algorithm and the buffer manager is not signif-

icant.

Environment

The partitioned and non-partitioned experiments were conducted on a PRIME
300 minicomputer. The PRIME 300 has a 16-bit word size and supports up to
256K words of real memory (1K=1024 words). Our system has 64K words. The
PRIME has virtual memory hardware which supports up to 512 pages of 512 words
each. The PRIME peripherals of interest in these experiments consist of two

moving head disks each having a capacity of 3 million words.

We have instrumented the PRIME's operating system with a software probe.
The probe is locked in memory and cannot interact with the paging process.
The probe records events that cause a significant change in the system such
as the occurrence of a page fault. The application program we used in our
experiments is a prototype data base management (DBM) system. The DBM is run
on a dedicated machine with the software probe collecting significant events
on tape for later analysis. The DBM system executes the same script of data
base requests in each of the experiments. The script completely traverses the
data base and causes reading, insertion and deletion of data as it is executed.

The DBM system organizes data in a tree structured format. Requests are
made in a series of primitive functions that perform elementary operations on
the data base. The data, names and pointers in the data base are encoded into
40-word segments. One physical disk record contains eleven data base segments.
The data base used in the experiments contains 45 records. We allocate each
disk record to a separate page in the virtual buffer to avoid physical page
boundary overlaps. The DBM virtual buffer size is chosen by the user when the
DBM system is initiated. The size of the virtual buffer can range from 1 to
64 pages in 1 page increments. A more detailed description of the environment

can be found in [2].

Previous Studies

Tuel [4,5] originally studied the paging and I/0 performance of an IBM
data base system (IMS Version 2.4 system running on VS/2 Release 1.6). Tuel
pcstulated a theoretical model of the buffer I/0 (paging in the buffer + I1/0
accesses)., His model and eppitrical results were reasonably close when only
the buffer paging was considered. The early version of IMS used in the study
forced the virtual buffer to be searched at every I/0 request since a pointer

array describing the contents of the buffer was not used. Tuel concluded that

buffer I/O increases with increasing virtual buffer size if the buffer is
allowed to page. Therefore the least amount of buffer I/0 is achieved by

reducing the virtual buffer size to fit the number of pages available in real

memory.

Our data base system and later versions of IMS now have a pointer array
describing the contents of the virtual buffer. Searching the pointer array
causes much less paging activity than the early IMS technique of reading the
information from the individual buffers. 1In a previous paper by Sherman and
Brice [2] we assume that searching the pointer array generates no page faults.
We develop a very simple theoretical model which predicts total 1’0 per data
base request (T) in the virtual buffer as a function of virtual buffer size
in pages (N), pages of real memory allocated to the virtual buffer (M) and the
number of pages in the data base (D). The model assumes that the random (RAND)
page replacement algorithm and RAND buffer manager are used and the data base
requests are uniformly distributed. Total I/0 per data base request in the

virtual buffer is given by

M N
T(M,N,D) = (1- ﬁ) page faults + (1- B) I/0 accesses for
1 <M<N<D.
Bv use of this model, we show that it is possible to increase the virtual

biffer size (N) and reduce the total 1/0 per data base request in the buffer

for various fixed values of M and D.

Although the model assumes that the program and buffer are partitioned,
the paging algorithms used in our previous experiments did not partition memory.
The factors we considered in the non-partitioned experiments are memory size,
virtual buffer size, page replacement algorithm and buffer management algorithm.
Our analysis of the empirical results of the non-partitioned experiments
led to the following conclusions: The interaction between the paging algorithm

and the buffer algorithm did not have a significant effect on the muffer T1/0.

e

While double paging existed, the double paging rate was not significantly
different for any combination of paging algorithm and bullc. ulguiiitim. Tue
cost of system I/0 (buffer I/0 + paging in the program) can decrease when

the virtual buffer size is increased but that the amount is very dependent on
the amount of real memory available. The performance advantages of virtual
buffers can overcome the costs of double paging and the increased program

paging resulting from the use of virtual buffers.

Experiments

The multifactor non-partitioned experiments of our previous study are
extended in this paper to include 5 levels for the size of the memory parti-
tion allocated to the virtual buffer. In our partitioned experiments we use
the RAND and SCH (second chance [6] also known as the Multics [7] algorithm)
page replacement algorithms. The page replacement algorithms treat each par-
tition separately. Pages in one partition are not considered by the page re-~
placement algorithm when a fault occurs in the other partition. The changes in
the page replacement algorithms to allow partitioning are the only differences
in these experiments and the previous experiments by Sherman and Brice [2].

The partitioned experiments use the FIFO (first in - first out), RAND, SCH, and
LRU (least recently used) virtual buffer managers and virtual buffer sizes of 1,
5, 10, 15, and 20 pages. The total amount of real memory is set to 40K, 44K,
and 48K.

The buffer partitions for these experiments are 1, 5, 10, 15, and 20 pages.
We only perform experiments for combinations of virtual buffer size and buffer
partition where the buffer partition is less than or equal to the virtual buffer
size. It would be unreasonable to execute a program with a virtual buffer size
smaller than the buffer partition. For example, experiments with a virtual
buffer size of 20 pages are combined with all the possible buffer partitions
while experiments with a virtual buffer size of 5 are combined with buffer par-

titions of 1 and 5 pages.
-5

A total of 360 experiments are performed and analyzed. The different
experiments are defined by combinations of the 2 paging algorithms, 4 buffer
managers, 3 real memory sizes, 5 memory partition sizes and virtual buffer -
sizes where the virtual buffer was at least as large as the buffer partition

size.

Results

Total I/0 in the partitioned system (system I/0) is composed of I/O
accesses in the virtual buffer, paging in the virtual buffer and paging in
the program. The I/0 accesses in the virtual buffer are depenient on the

virtual buffer size and the buffer management algorithm. The I/O accesses

are listed in Table I. Paging in the virtual buffer is dependent on the
page replacement algorithm in the buffer, the number of real pages allocated
to the buffer (buffer partition), the virtual buffer size and the buffer
management algorithm. The paging in the buffer is shown in Table II. Table II
divides peging in the buffer into paging caused by the disk I/0 manager
(double paging) and paging caused by attempts to reference the data in the
buffer (reference paging). Paging in the program is a function of the page
replacement algorithm in the program partition and the amount of real memory
available in the program partition. Table III contains the average program
page fault counts for all of the different program partition sizes. A
program partition size is determined by subtracting buffer partition size
from real memory size. For each of the three real memory sizes there are
five buffer partition sizes giving a total of fifteen program partition sizes.
In order to omit congestion we usually present figures that are repre-
sentative rather than exhaustive in terms of the number of levels of factors
available. A complete set of figures for the partitioned experiments can

be constructed from the data in Table I, Table II and Table III.

System I/0 is shown in Figures I through III. For a given partition size
the smallest values for system I/0 are obtained when the virtual buffer size
is equal either to the partition (this is equivalent to a non-virtual system
in the buffer partition), or the maximum virtual buffer size of 20 pages (at
this size a significant reduction in the number of I/0 accesses has occurred).
When program paging is substantial, such as in the experiments using less real
memory (Figure I), system I/0 decreases as the program partition becomes
larger. 1In the experiments using more real memory (Figure II and Figure III)
system I/0 also decreases for larger buffer partitions.

In order to understand the performance of total I/0 in the system we
examine each of its components separately. The program paging for all experi-
ments is shown in Figure IV with the averages in Table III. The variations
due to the program paging requirements of the different buffer managers and
different seeds in the RAND page replacement algorithm are relatively small.
The paging behaves as expected in the program partition. The SCH page replace-
ment algorithm creates fewer page faults than the RAND algorithm and paging
increases as the program partition decreases.

Since program paging increases as the buffer partition increases, a de-
crease in system I/0 can only occur if those components of total I/0 in the
buffer partition (buffer 1/0) decrease. Buffer I/0 decreases as the buffer
partition increases when the virtual buffer size is equal to the partition
size since there is no paging in the buffer and the number of I/0 access
decreases. When the decrease in buffer 1/0 is greater than the corresponding
increase in program paging, system I/0 is reduced. Points A, B, C of Figure
III illustrate cases where system I/0 is reduced by an increase in buffer
partition size. Points C, D, E of Figure III show cases where system I/0

is increased by an increase in buffer partition size.

Slight decreases in system I/0 due to an increased buffer partition size
are observed in some of the experiments where total memory size is 48K. No-
ticeable increases in system I/0O are typical when total memory size is 40K.
This is illustrated by points A, B, C, D, E of Figure I.

Once a buffer partition is established, the virtual buffer size is allowed
to range from the buffer partition size to 20 pages in our experiments. We
define the buffer ratio to be virtual buffer size divided by the buffer parti-
tion size. A buffer ratio of 1 represents a non-virtual buffer partition (no
paging can occur in the buffer). Increasing the buffer ratio decreases disk
accesses and increases paging in the buffer. Increasing the buffer ratio can
only reduce buffer I/O if the decrease in I1/0 accesses is greater than the
increase in buffer paging.

Buffer I/0 is composed of I/0 accesses, double paging and reference paging.
Double paging occurs when the buffer manager chooses to replace the information
in a page that is not in real memory. Reference paging refers to page faults
caused by attempts to use information that is in the virtual buffer but not in
real memory. We define the double paging rate to be the number of double page
faults divided by the number of I/0 accesses. We define the reference paging
rate to be the number of reference faults divided by 1075 minus the number of
I1/0 accesses. The maximum number of disk accesses which can occur in our ex-
periments is 1075. Table II divides the paging for all the partitioned experi-
ments into reference and double paging. Table I contains the I/0 accesses for
all of the partitioned experiments. Buffer I/0 for a given page replacement
algorithm, buffer manager, buffer partition size and virtual buffer size is
obtained by adding the corresponding three values from Table I and Table II.

Some observed values for buffer I/0 arv shown in Figure V. Buffer I/0
Lypically shows a sharp increase as soon as the buffer ratio becomes greater

than 1. This is followed by a decrease in buffer I/0 as the buffer ratio is

extended to its maximum value. The minimum value for buffer I/0 in a given
partition is usually observed when the buffer ratio is 1.

The sharp increase in buffer I/0 is caused byia sharp increase in paging
when the buffer ratio is slightly larger than 1. If the number of I/0 access
is close to its maximum value of 1075 when the buffer ratio is 1, the increase
in paging is due to an increase in double paging. If the number of I/0 ac-
cesses is small when the buffer ratio is 1, a sharp increase in reference
paging causes the increase in paging. This phenomenon can be seen from an
examination of Tables I and II., The double paging is high when the I/0 ac-
cesses are large because the double paging rate increases very quickly as
soon as the buffer ratio is greater than 1 for the SCH, FIFO and LRU buffer
managers. The RAND buffer manager has a double paging rate that does not
increase as quickly as the other buffer managers. Figure VI shows that the
double paging rate for the SCH paging algorithm increases close to its maximum
value of 1 for all the buffer managers except RAND. The double paging rates for
the RAND paging algorithm increase almost as steeply as those shown in Figure VI
but terminate at significantly lower values for all the buffer managers except
RAND. The reference paging rate increases almost linearly with virtual buffer
size and is insensitive to the page replacement algorithm.

Table I shows that the I/0 accesses decrease as the virtual buffer size
increases and the RAND buffer manager requires fewer I/0 access than the others.
The better performance of the RAND buffer manager is due to the record reference
pattern which contains a few highly referenced records usually separated by

strings of references [2].

Figure V shows that the RAND buffer manager has less buffer I/0 than
the SCH buffer manager. The FIFO and LRU buffer managers produce results
similar to the SCH buffer manager. The performance of the RAND buffer manager

is better than the others because it typically has less I/O accesses and a

lower double paging rate. This combination results in less buffer I/0 even
though the reference paging of the RAND buffer manager is higher at virtual
buffer sizes of 10 and 15.

An examination of Table II shows that the RAND pager produces slightly
fewer page faults than the SCH pager for the RAND buffer manager. The
RAND pager often produces significantly fewer page faults than the SCH
pager for the other buffer managers. This is a direct reflection of the
reduction in the double paging rate by the RAND pager. The best combination
of paging algorithm and buffer manager to reduce the buffer I/0 to a minimum
when the buffer ratio is greater than 1, is clearly the RAND paging algorithm
and the RAND buffer manager.

Figure VII contains the buffer 1/0 for all buffer partition sizes with
a combination of RAND page replacement algorithm and RAND buffer manager.
Corresponding model predictions using the formula presented in a earlier
section for total I/O per data base request are also shown in Figure VII for
comparison. In the model the record references were randomly distributed in
D with equal probability. We showed in [2] that the distribution of the record
references generated by the test bed script more closely approximated an expo-
nential distribution. Approximately 90% of the record references were contained
in the most frequently referenced 25 records. The model predictions are based
on a data base size (D) of 25 records. As the value of D is increased to 45
(the size of the experimental data base) the values for predicted buffer I1/0

increase. The model is quite robust considering its simplicity.

The partitioned experiments are conducted with the same page replacement
algorithm in each partition. Memory partitioning removes any interaction
between program paging and buffer 1/0. This allows us to combine the buffer
1/0 generated in one test case with the program paging generated in another

test case partitioned the same way. Since the buffer I/0 is minimized by use

-10-

of the RAND paging algorithm and the program paging is minimized with the SCH
paging algorithm, a combination of these two paging algorithm will produce
the minimum system 1/0.

We performed an analysis of variance [8] of the values for buffer paging
for buffer partition sizes of 1, 5, 10 and 15 pages. The analysis does not
include the cases where the buffer ratio is 1. The factors included in the
analysis are buffer manager, page replacement algorithm and virtual buffer
size. The interaction of the buffer manager and the page replacement algo-
rithm do not cause a significant amount of the variation. The buffer managers
caused most of the variation for the small buffer partitions. The buffer
managers and paging algorithms both affect the variation significantly for

the large buffer partitioms.

Conclusion

We show that the size of the buffer partition can cause significant varia-
tion in system I/0 due to increased program paging. With partition size fixed,
increasing the size of a virtual buffer over the partition size increases
buffer 1/0 significantly initially and then buffer I/0 decreases. When I/0
accesses are considered equal in cost to page faults, the buffer I/0 at 20
pages is usually slightly greater than the buffer I/0 when the virtual buffer
was equal to the partition size. If I/O accesses cost more in terms of time
than page faults (as is usually the case in most systems) then the use of
virtual buffers can improve system performance.

There is a significant double paging effect in the buffer. The RAND page
replacement algorithm produced less paging in the buffer than the SCH algorithm
because it produced a lower double paging rate although the SCH algorithm was
clearly superior in the program partition. The RAND buffer manager produced

less buffer 1/0 than the SCH, FIFO and LRU buffer managers because it produced

-11-

a lower double paging rate and fewer I/0 accesses due to the stringed character
of the record requests, More variation in buffer I/0 is usually due to the
buffer managers than the paging algorithm but the interaction of those factors
does not cause a significant amount of variation.

Our experiments show that it is possible for the use of a virtual buffer
to improve performance in a partitioned system. The chances for improving
performance are increased if: (1) The cost of I/0 accesses are greater than the
cost of paging. (2) The RAND paging algorithm is used in the buffer partition.
(3) The SCH paging algorithm is used in the program partition. (4) The RAND
buffer manager is chosen. (5) The virtual buffer size is significantly larger

than the buffer partition size.

Bibliography

1. Goldberg, R. and R. Hassinger, "The Double Paging Anomaly,'" Proc. 1974
National Computer Conference, Chicago, May 6-8, 1974.

2. Sherman, S. W. and R. S. Brice, "Performance of a Data Base Manager in a
Virtual Memory System,'" Proceedings SIGMOD International Conference on
Management of Data, June, 1976.

3. Schwetman, H. D. and J. C. Browne, "An Experimental Study of Computer System
Performance," Proc. National ACM Conference, Boston, Mass., August 1972,
pp. 693-703.

4. Tuel, W. G., "An Analysis of Buffer Paging in Virtual Storage Systems,"
IBM Report RJ 1421, July 1974.

5. Tuel, W. G., "An Analysis of Buffer Paging in Virtual Storage Systems,"
Proc. Third Texas Conference on Computing Systems, Austin, Tex=as, November
1974.

6. Hoare, C. A. R. and R. M. McKeag, "A Survey of Store Management Techniques,"
A.P.I.C. Studies in Data Processing, No. 9, Academic Press, 1972.

7. Corbato, F. J., "A Paging Experiment with the Multics Svatem," Trn Yonor of
P. M. Morse, M.I.T. Press, Cambridge, Mass., 1969, pp. 217-228.

8. Tsao, R. F.; L. W. Comeau, and B. H. Margolin, "A Multi-Factor Paging

Experiment I, II," Statistical Computer Performance Evaluation, edited by
Walter Freiberger, Academic Press, pp. 103-158.

~12~

virtual Buffer

Buffer Managers

Size in Pages LRU SCH RAND FIFO
1 1075 1075 1075 1075

5 784 791 774 794

10 684 687 559 688

15 418 422 270 434

20 93 98 154 103

TABLE I. Number of I/0 requests to read records into
the virtual buffer.

Pages FIFO LRU RAND SCH
Allocated | Virtual
To Buffer Source of Fault
Buffer Size DP RP DP RF Dp RP DP RP
1 1 1l 0 1l 0 1 0 1 0
5 787 279 (784 289 (625 298 (787 282
10 681 385 (684 387 {534 511 |687 384
15 434 637 (418 €53 (24¢ 797 (422 648
20 102 965 94 975 ;152 915 99 97¢
RAND 5 5 12 4 8 0 10 7 15 3
PAGER 10 553 110 590 113 (283 220 |587 96
15 408 359 1405 374 1184 507 1404 351
20 100 670 94 682 126 609 98 687
10 1¢ 25 5 14 ¢ % 21 10 20 5
15 291 194 275 199 94 271 1268 183
20 82 445 85 448 78 379 87 441
15 13 41 17 36 13 2% 29 39 13
20 64 200 59 19¢€ 42 135 59 178
20 20 37 44 33 27 21 8 34 29
1 1 1 0 1 0 1l 0 1l 0
5 786 279 (784 289 1625 298 1787 282
10 680 385 !'684 387 1534 511 |6&€ 384
13 433 637 1418 652 {246 797 1421 648
20 101 965 94 975 {152 915 98 970
5 5 5 0 5 0 5 0 5 0
“1C 649 101 684 108 |[300 219 !675 103
scH : 13 428 358 1418 374 '190 512 |41° 370
PAGER | 20 | 98 689 | 94 €98 |124 634 | 98 693
10 ’ C 10 0 10 0 i 10 0 10 0
= 205 250 141€ 272 -*ec0 393 1405 27¢C
20 92 5382 | 93 602 21 529 92 585
15 . 135 15 01} 15 0 15 0 15 0
20 8¢ 330 93 330 ! 44 154 gg 255
20 20 ! 20 0 20 0 ' 20 0 20 0

TABLE 11. Double paging (DP) and reference paging (RP) in the

virtual buffer.

-13-

170

Sagee
- Alheumand
Setel Seal k [- Segteg Algeotitn
Wy Sgitien Supeieien [T ™9
o 1 » 1 pouoy
-k 3 s n» =4
- » »] ne
o 1 [«-e 4
. - » - poved an
L3 3 o % -
Mk s 83 ey 138
o 10 n 182 oz
prrls 15] 2603 nise
44k 20 - /25 2913
A8k 1 ” w7 »n
L 3 5 3 e B
L 3 1 % 08 *%
A8k 13 3] %y o0y
3 » % 1927 uss

IAEE IIL, Average pregram pagisg for 3R and AND

5000, £
Pases Lockep
1 sresersene
L Dol [R
L QR
e TN —— 15— — ——
) ..; e - — 2 POINT E
| \‘\\
A
1 (] -]
1 5 - 10 15 20

VirtuaL Burrer Size
Fieure |
Svstem 1/0 (Procram Pacing ® Burrer Pasine © 1/0 Accesses)
FOR PARTITIONED EXPERIMENTS USING SCH PAGE REPLACEMENT ALGORITHM,

RAND BUFFER MANAGER AND 80X MEMORY.
Ar roints A, B, C, D, £, BurFer RaTio = 1

Paces Lockep

1 [(EEXEERNERE]

5 e gmpmga -

10 ---ecmenvmn

20 POINT E
£
D —————————
25001 e ——_

€~ TS

e e —

1 5 Y 15 20

VirTuAL BUFFER StzE
Fisure 11

System 170 (ProcraM PAGING + BUFFER PAGING + 1/0 AccESSES) FOR PARTITIONED
EXPERIMENTS USING SCH PAGE REPLACEMENT ALGORITHM, RAND BUFFER MANAGER AND

B4K MEMORY.
AT Points A, B, C, D, €, Burrer Ratio = 1,

L} o -
- N
- ~ DD racons auBentvill
L A $I1 potee osRIYR
H -
00 . T
2500 I ¢ Pat !
) Fawts ™ P
SYSTER e e e .)
in ~ e o0 ['y
= e o inessl iy L]
A '/ £ oo ce—allil . [) . ' '
\ . LI | i l
. [1 A), —eena) . 0 1 i 1 i —t !t_’ H
. 5 10 15 20))))
. . - ’
Vinroa Burrer S12e - PASES ALLOCATED TO Tt PR00RMN
Froume 1V
Fiowne 111 . o WO
Svaren 170 (Prosnan Pasins ¢ Burrea Pasiwe + 1/0 Accusses) Po sasvitionty Proensn ’“"":: ”:'m e
expERImENTS USING SCH PAGE REPLACEMENT ALSORITHN, RAND DUPFER MANASER AND nepLACE ALton
ABK manonv, .
Ar Potnrs A, D, €, D, £, Bureer Matio = 1,
PAGES LOCKED
. 19
[S N
10 cemcmcene.
15 - =
20 POINT €
DOUBLE
PASING
RATE s
Y .
- «
. [
0 1 - 1 J A 0
5 10 15 20 1
VIRTUAL BLFFER SIZE VIRTUAL BUFFER SIZE
Fisuaz V . Fioure VI
Burrn /0 (Burren Pasing + 1/0 Accassss) rom commimation oF SON rast Dousce Pacinc Rate Fom SCH Pace REPLACEMENT ALOORITIN witw
urucu:(;z)umlm with RAXD aweren samaesn (RA) mo SO swrren FIFO, LRU, ano RAND Burren Mamactrs

BUFFER
170

Virruae Bueren Stze
Freure V11
Burren 1/0 (Pastwe 1w Tve surren + 1/0 Accesses) pom Twe moeL 1)
AWD YMT BRRYITIONED EXPEITINENT

anp RAYD BurFER MANAGER.

(Z0 wiTh RANS PAGE RETLACEMENT ALGORITHNM

-15-

